Addition theorems via continued fractions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Addition Theorems via Continued Fractions

We show connections between a special type of addition formulas and a theorem of Stieltjes and Rogers. We use different techniques to derive the desirable addition formulas. We apply our approach to derive special addition theorems for Bessel functions and confluent hypergeometric functions. We also derive several addition theorems for basic hypergeometric functions. Applications to the evaluat...

متن کامل

Addition Chains Using Continued Fractions

This paper introduces a new algorithm for the evaluation of monomials in two variables X " JJ~ based upon the continued fraction expansion of a/b. A method for fast explicit generation of addition chains of small length for a positive integer n is deduced from this Algorithm. As an illustration of the properties of the method, a Schoh-Brauer-like inequality p(N) s nb + k + p(n + l), is shown to...

متن کامل

Solved via Continued Fractions

The purpose of this article is to provide criteria for the solvability of the Diophantine equation a2X2− bY 2 = c in terms of the simple continued fraction expansion of √ a2b, and to explore criteria for the solvability of AX2 − BY 2 = C for given A, B, C ∈ N in the general case. This continues work in [9]–[11].

متن کامل

Efficient computation of addition-subtraction chains using generalized continued Fractions

The aim of this paper is to present a new way of computing short addition-subtraction chains using the generalized continued fractions where subtraction is allowed. We will recover the most used ways of getting addition-subtraction chains. This method is not always optimal but gives minimal chains that are easy to compute.

متن کامل

Generalized Continued Logarithms and Related Continued Fractions

We study continued logarithms as introduced by Bill Gosper and studied by J. Borwein et. al.. After providing an overview of the type I and type II generalizations of binary continued logarithms introduced by Borwein et. al., we focus on a new generalization to an arbitrary integer base b. We show that all of our so-called type III continued logarithms converge and all rational numbers have fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2009

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-09-04868-5